
Lecture 2: 2D Fourier transforms and applications

B14 Image Analysis       Michaelmas 2014        A. Zisserman

• Fourier transforms and spatial frequencies in 2D
• Definition and meaning

• The Convolution Theorem
• Applications to spatial filtering

• The Sampling Theorem and Aliasing

Much of this material is a straightforward generalization of 
the 1D Fourier analysis with which you are familiar.



Reminder: 1D Fourier Series

Spatial frequency analysis of a step edge

Fourier decomposition

x



Fourier series reminder

Example 
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Fourier series for a square wave

f(x) =
X

n=1,3,5,...
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Fourier series: just a change of basis
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M f(x) = F()



Inverse FT: Just a change of basis
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M-1 F() = f(x)



1D Fourier Transform

Reminder transform pair - definition

Example

x u



2D Fourier transforms



2D Fourier transform 

Definition



Sinusoidal Waves



To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with this 
frequency along the direction, 
and constant perpendicular to 
the direction. 
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Here u and v are larger than 
in the previous slide.
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And larger still...

u

v



Some important Fourier Transform Pairs



FT pair example 1

rectangle centred at origin 
with sides of length X and Y

|F(u,v)|

separability

f(x,y) |F(u,v)|

v

u



FT pair example 2

Gaussian centred on origin

• FT of a Gaussian is a Gaussian

• Note inverse scale relation

f(x,y)

F(u,v)



FT pair example 3

Circular disk unit height and
radius a centred on origin

• rotational symmetry

• a ‘2D’ version of a sinc

f(x,y)

F(u,v)



FT pairs example 4

f(x,y) F(u,v)



= + + + …

f(x,y)

Summary



Example: action of filters on a real image

f(x,y)

|F(u,v)|

low pass high passoriginal



Example 2D Fourier transform

Image with periodic structure

f(x,y) |F(u,v)|

FT has peaks at spatial frequencies of repeated texture



Example – Forensic application

Periodic background removed

|F(u,v)|

remove 
peaks



Example – Image processing
Lunar orbital image (1966)

|F(u,v)| remove 
peaks

join lines 
removed



Magnitude vs Phase

f(x,y)

|F(u,v)|

• |f(u,v)| generally decreases with      
higher spatial frequencies

• phase appears less informative

phase F(u,v)

cross-section



The importance of phase

magnitudephase phase



A second example

magnitudephase phase



Transformations

As in the 1D case FTs have the following properties

• Linearity

• Similarity

• Shift



f(x,y) |F(u,v)|

Example
How does F(u,v) transform if f(x,y) is rotated by 45 degrees?

In 2D can also rotate, shear etc

Under an affine transformation: 



The convolution theorem



Filtering vs convolution in 1D

100 | 200 | 100 | 200 |  90 |  80 |  80 | 100 | 100f(x)
1/4 | 1/2 | 1/4h(x)

g(x) | 150 |        |         |       |       |        |        |       

molecule/template/kernel

filtering f(x) with h(x)

g(x) =

Z
f(u)h(x− u) du

=
Z
f(x+ u0)h(−u0) du0

=
X
i

f(x+ i)h(−i)

convolution of  f(x) and h(x)

after change of 
variable

• note negative sign (which is a reflection in x) in convolution

• h(x) is often symmetric (even/odd), and then (e.g. for even)



Filtering vs convolution in 2D

image f(x,y)

filter / kernel h(x,y)

g(x,y) =

convolution

filtering

for convolution, reflect filter in x and y axes



Convolution

• Convolution: 
– Flip the filter in both dimensions (bottom to top, right to left)

h

f
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filtering with hconvolution with h



Filtering vs convolution in 2D in Matlab

2D filtering
• g=filter2(h,f); 

2D convolution
• g=conv2(h,f);
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f=image
h=filter
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In words: the Fourier transform of the convolution of two 
functions is the product of their individual Fourier transforms

Space convolution = frequency multiplication

Proof: exercise

Convolution theorem

Why is this so important?

Because linear filtering operations can be carried out by simple 
multiplications in the Fourier domain



The importance of the convolution theorem

Example smooth an image with a Gaussian spatial filter

Gaussian 
scale=20 pixels

It establishes the link between operations in the frequency 
domain and the action of linear spatial filters

*
1. Compute FT of image and FT of Gaussian

2. Multiply FT’s

3. Compute inverse FT of the result.



f(x,y)

x

Fourier transform

Gaussian 
scale=3 pixels

*

|F(u,v)|

g(x,y)

|G(u,v)|

Inverse Fourier 
transform



f(x,y)

x

Fourier transform

Gaussian scale=3 pixels

*

|F(u,v)|

g(x,y)

|G(u,v)|

Inverse Fourier 
transform



There are two equivalent ways of carrying out linear spatial 
filtering operations:
1. Spatial domain: convolution with a spatial operator

2. Frequency domain: multiply FT of signal and filter, and compute 
inverse FT of product

Why choose one over the other ?
• The filter may be simpler to specify or compute in one of the domains

• Computational cost



Exercise

What is the FT of …

?

2 small disks



The sampling theorem



Discrete Images - Sampling

x

X

f(x)

xx



Fourier transform pairs



Sampling Theorem in 1D

*

spatial domain frequency domain

replicated copies of F(u)

F(u)
x

u



Apply a box filter

The original continuous function f(x) is completely recovered from the samples 
provided the sampling frequency (1/X) exceeds twice the greatest frequency of the 
band-limited signal. (Nyquist sampling limit)

u1/X

F(u)f(x)

x



The Sampling Theorem and Aliasing
if sampling frequency is reduced …

spatial domain frequency domain

Frequencies above the Nyquist limit are 
‘folded back’ corrupting the signal in the 
acceptable range.

The information in these frequencies is 
not correctly reconstructed.

x u



* =

Sampling Theorem in 2D

* =

frequency domain

1/Y F(u,v)
1/X



If the Fourier transform of a function ƒ(x,y) is zero for all 

frequencies beyond ub and vb,i.e. if the Fourier transform is 

band-limited, then the continuous function ƒ(x,y) can be 

completely reconstructed from its samples as long as the 

sampling distances w and h along the x and y directions 

are such that                         and 
bu

w
2
1


bv

h
2
1



The sampling theorem in 2D



Aliasing



Insufficient samples to distinguish the high and low frequency

aliasing: signals “travelling in disguise” as other frequencies

Aliasing : 1D example

If the signal has frequencies above the Nyquist limit …



Aliasing in video

Slide by Steve Seitz



Aliasing in 2D – under sampling example

original reconstruction

signal has frequencies 
above Nyquist limit



Aliasing in images



What’s happening?
Input signal:

x = 0:.05:5;  imagesc(sin((2.^x).*x))

Plot as image:

Aliasing
Not enough samples



Anti-Aliasing 

• Increase sampling frequency
• e.g. in graphics rendering cast 4 rays per pixel

• Reduce maximum frequency to below Nyquist limit
• e.g. low pass filter before sampling



Example

convolve with 
Gaussian

*

down sample by 
factor of 4

down sample by 
factor of 4

4 x zoom



Hybrid Images



Frequency Domain and Perception

Campbell-Robson contrast sensitivity curve

slide: A. Efros







Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006


