Lecture 2: 2D Fourier transforms and applications

B14 Image Analysis Michaelmas 2014 A. Zisserman

« Fourier transforms and spatial frequencies in 2D
« Definition and meaning

* The Convolution Theorem
« Applications to spatial filtering

« The Sampling Theorem and Aliasing

Much of this material is a straightforward generalization of
the 1D Fourier analysis with which you are familiar.



Reminder: 1D Fourier Series

Spatial frequency analysis of a step edge

-1 ifa<O
f(@) = { 1  otherwise —

Fourier decomposition

Fourier Series
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Fourier series reminder

Example

f(x) = Siﬂm—l—%sin&v—l—...



Fourier series for a square wave

r - flz) = Z 1 Sinnx

n=1,3,5,... n
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Fourier series: just a change of basis

M f(x) = F(w)
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Inverse FT: Just a change of basis

M F(@) = f(X)
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1D Fourier Transform

Reminder transform pair - definition

F(u) = /_o:o f(z)e ™2™ dy,
f(x) = /_O:o F(u)e?*™ dy

Example
ro={5

<7,
0, |z| > %

f(x) +

F(u) = /_ O:O f(z)e 2oy

X/2
= e
—X/2
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F(u)

— = [e—jQ’.'TuX/Q o €j27ruX/2]
—J2mu

sin(m X u)

=X (7 Xu)

= Xsinc(nXu). X




2D Fourier transforms



2D Fourier transform

Definition
F _ /OO /OO f T y)e—jQ'rr(u:L'—l-vy) dz dy,
/ / (u,v) 672'” (wz+vy) day do

where u and v are spatial frequencies.

Also will write FT pairs as f(z,y) & F(u,v).

e ['(u,v) is complex in general,
F(u,v) = Fr(u,v) + jFi(u,v)

e |F(u,v)| is the magnitude spectrum

e arctan(Fi(u,v)/Fr(u,v)) is the phase angle spectrum.
e Conjugacy: f*(z,y) & F(—u,—v)

e Symmetry: f(z,y)is evenif f(z,y) = f(—z,—y)



Sinusoidal Waves

In 1D the Fourier transform is based on a decompostion into func-
tions e/*™* = cos 2muz + jsin 2ruz which form an orthogonal basis.
Similarly in 2D

P2 TW) — cos 27 (uz + vy) + j sin 27 (uz + vy)

The real and imaginary terms are sinusoids on the z,y plane. The
maxima and minima of cos 27 (ux + vy) occur when

21 (ux + vy) = nw
write uz + vy using vector notation with u = (u,v) ", x = (z,y)' then
21 (ux + vy) = 27u.X = nw

are sets of equally spaced parallel lines with normal u and wave-

length 1/v/u? + v2.



To get some sense of what
basis elements look like, we
plot a basis element --- or
rather, its real part ---

as a function of x,y for some
fixed u, v. We get a function
that is constant when (ux+vy)
Is constant. The magnitude of
the vector (u, v) gives a
frequency, and its direction
gives an orientation. The
function is a sinusoid with this
frequency along the direction,
and constant perpendicular to
the direction.
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Some important Fourier Transform Pairs



F(u,v

FT pair example 1

? v
rectangle centred at origin
with sides of length X and Y A,
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FT pair example 2

Gaussian centred on origin . »------:-"""';’;iiii'ﬁéf?'55::'jé‘iii.ﬁl?????fi?'iiiijj;;f;?-i"i;;;;;g:.._

— 1 —7‘2/20-2
f(r) = 27r026

where 72 = 2% + ¢

2,22

F(u,v) = F(p) = e " P°

where p? = v’ +v°.

* FT of a Gaussian is a Gaussian -~ .-

* Note inverse scale relation



FT pair example 3

Circular disk unit height and
radius a centred on origin

1, |r] < a,

flz,y) = {0’ r| > a.

F(u,v) = F(p) = aJi(rap)/p

where Ji(z) is a Bessel function.

e rotational symmetry

e a ‘2D’ version of a sinc




FT pairs example 4

f(z,y) =d(z,y) = d(z)d(y)

F(u,v) = //5(:13, y)e_jzﬂ(us”'_"vy) dxdy
= 1
f(x,y) F(u,v)
1
f(xvy) — 5(5(:67?/ _ (L) + 6(337?} + a‘))
Fluw) = o [ [@Gy—a)+5(ey+a)) e 92700 dray

1 . .
= 5 (6_327“”’ + 6‘7271—&@) = COS2mav



Summary

The spatial function f(z,y)
f / (w, v) P2 Y) doy dy

is decomposed into a weighted sum of 2D orthogonal basis functions
in a similar manner to decomposing a vector onto a basis using scalar

products.

f(xy)




Example: action of filters on a real image

original low pass high pass
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Example 2D Fourier transform

Image with periodic structure

IF(u.V)]

FT has peaks at spatial frequencies of repeated texture



Example — Forensic application
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|F(uv)]

.......

remove
peaks

Periodic background removed



Example — Image processing

Lunar orbital image (1966)

|F(u,v)| remove join lines
peaks removed



Magnitude vs Phase

cross-section

f(xy)

e [f(u,v)| generally decreases with
higher spatial frequencies

* phase appears less informative




The importance of phase
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A second example




Transformations

As in the 1D case FTs have the following properties

e Linearity
af(z,y) + By(z,y) & aF(u,v) + BG(u,v).

o Similarity
u v

flaz,by) & iF( E)

ab ‘a

This applies, for example, when an image is scaled

* Shift

f(z —a,y —b) & MR (u, )

This might apply, for example, if an object moved.



In 2D can also rotate, shear etc

Under an affine transformation: x — Ax u— A Tu
Example

How does F(u,v) transform if f(x,y) is rotated by 45 degrees?

f(x,y) F(uY))
r

7

[fA=RthenA~ " =R.

i.e. FT undergoes the same rotation.



The convolution theorem



Filtering vs convolution in 1D

g(z) = Z f(z 4+ 1)h(7) filtering f(x) with h(x)

f(x) 100 | 200|100 |200| 90| 80| 80| 100 | 100

1/4|1/2 | 1/4
g(x) 1500 | | | | ] |

g(z) = / F(wh(z —u)du  convolution of f(x) and h(x)

__ / / /  after change of
= x+ u )h(—u ) du
/f( +u)h(—u) variable ¢/ = u — 2
= > f(z 4+ i)h(—1)
* note negative sig7h (which is a reflection in x) in convolution

* h(x) is often symmetric (even/odd), and then (e.g. for even)

g(x) = Y [ +i)h(i)



Filtering vs convolution in 2D

convolution g(z,y) = h(z,y)* f(z,y) = f(z,y) * h(z,y)
= /ff(u,v)h(a: —u,y —v)dudv
L oJ

filtering image f(x,y) —
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filter / kernel h(x,y)

H1

hyy [hyshss | .-

gx,y)= huf(—1,7-1) + hppf(i—1,7) + hizf(i—1,7+1)+
h?lf(i,j - 1) + hggf('l,j) + hzgf(l,]+1) +
har fli+1,7—1) + hpf(i+1,7) + hf(i+1,7+1)

for convolution, reflect filter in x and y axes



Convolution

e Convolution:
— Flip the filter in both dimensions (bottom to top, right to left)

gli,j] = Z Z hlu, ] fli —u,j — 0]

u=—kv=—k

convolution with h Y

slide: K. Grauman



Filtering vs convolution in 2D in Matlab

2D filtering f=image
e g=filter2(h, f); h=filter

g[m,n]=> h[k,I] f[m+k,n+I]

2D convolution
e g=conv2 (h, f);

g[m,n]=> hik,I] f[m—k,n—I]



Convolution theorem

f(x,y)*h(z,y) < F(u,v)H(u,v)

Space convolution = frequency multiplication

In words: the Fourier transform of the convolution of two
functions is the product of their individual Fourier transforms

Proof: exercise

Why is this so important?

Because linear filtering operations can be carried out by simple
multiplications in the Fourier domain



The importance of the convolution theorem

It establishes the link between operations in the frequency
domain and the action of linear spatial filters

Example smooth an image with a Gaussian spatial filter

Gaussian

1. Compute FT of image and FT of Gaussian

2. Multiply FT’s
Py f(@,y) * g(z,y) © F(u,v)G(u,v)
3. Compute inverse FT of the result.



Inverse Fourier
transform

IG(u,v)]



Gaussian scale=3 pixels

.

|F(uv)] 1G(uv)]

Inverse Fourier

Fourier transform ‘ transform




There are two equivalent ways of carrying out linear spatial
filtering operations:

1. Spatial domain: convolution with a spatial operator

2. Frequency domain: multiply FT of signal and filter, and compute
inverse FT of product

Why choose one over the other ?
« The filter may be simpler to specify or compute in one of the domains

e Computational cost



Exercise

What is the FT of ...

2 small disks



The sampling theorem



Discrete Images - Sampling

In 1D model the image as a set of point samples obtained my multi-
plying f(z) by the comb function

comb(x) = nioc d(x —nX)

an infinite set of delta functions spaced by X.

T

=Y




In 2D the equivalent of a comb is a bed-of-nails function

io: § Oz —nX)o(y —mY)

n=—o0 m=—

Fourier transform pairs R

iO: (5(:1:—72)(')(—)l f: d(u—n/X)

n=—0o0 X n=—00

o0 o0 ] o0

S Y S@—nX)iy—mY) o — 3 Su—n/X) Y Sv—n/Y)

n=—oo m=—0o0 XY n=—oo m=—oQ



Sampling Theorem in 1D

spatial domain frequency domain
A A A

T A A A

Fs(u):% io: 5(u—n/X)*F(u):% io: o /\/\/\

replicated copies of F(U)



H(u) = rect(uX)

A
Apply a box filter
N
1/X u
N) F(u)
S —
—_—
X
- T F ’u, = Fy(u)H(u
fl@)= % f(nX) (:c—nX)*sincyx (u)H (u)

Z f(nX)smc%(a; —nX)

n—_

The original continuous function f(x) is completely recovered from the samples
provided the sampling frequency (1/X) exceeds twice the greatest frequency of the
band-limited signal. (Nyquist sampling limit)



The Sampling Theorem and Aliasing

If sampling frequency is reduced ...

spatial domain

-—
’ Y

4 ~
F 4 ~

X

Frequencies above the Nyquist limit are
‘folded back’ corrupting the signal in the
acceptable range.

The information in these frequencies is
not correctly reconstructed.

A
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frequency domain
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Sampling Theorem in 2D

frequency domain

H(u,v) = rect(uX)rect(vY)

flz,y) = Z Z f(nX, mY)%m(*X(cc - nX)%ch(y —nY)

n=—oo m=—0oo



The sampling theorem in 2D

If the Fourier transform of a function f(x,y) is zero for all
frequencies beyond u, and v,,i.e. if the Fourier transform is
band-limited, then the continuous function f(X,y) can be
completely reconstructed from its samples as long as the
sampling distances w and h along the x and y directions

are such that ) < 1 and h< 1

2U,, 2V,



Allasing



Aliasing : 1D example

If the signal has frequencies above the Nyquist limit ...

Insufficient samples to distinguish the high and low frequency

aliasing: signals “travelling in disguise” as other frequencies



Aliasing In video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[f camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDDRPB

frame 0 frame 1 frame 2 frame 3 frame 4
I ] n .
shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Slide by Steve Seitz



Aliasing in 2D — under sampling example

original reconstruction

signal has frequencies
above Nyquist limit



Aliasing in images

Disintegrating textures




What's happening?

Input signal:

L

Plot as image.:

‘ T
20 30 40 50 B0 70 80 a0 100

X = 0:.05:5; imagesc(sin((2.*x).*x))

Aliasing
Not enough samples
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Anti-Aliasing

 Increase sampling frequency
e e.g. In graphics rendering cast 4 rays per pixel

* Reduce maximum frequency to below Nyquist limit
e e.g. low pass filter before sampling



4 X zoom

down sample by
factor of 4

=

convolve with
Gaussian

down sample by
factor of 4




Hybrid Images



Frequency Domain and Perception

8 W VAR

Campbell-Robson contrast sensitivity curve
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Perception of hybrid images >

Sl

Frequency cut=16 cyclesllmagi
Frequency "
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Cycles/image
50 100

2- Frequency cut = 36 cycles/image
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Changing expression 'S
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» Surprised

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006




